Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Proteins ; 89(9): 1158-1166, 2021 09.
Article in English | MEDLINE | ID: covidwho-1296890

ABSTRACT

The 2019-novel coronavirus also known as severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a common threat to animals and humans, and is responsible for the human SARS pandemic in 2019 to 2021. The infection of SARS-CoV-2 in humans involves a viral surface glycoprotein named as spike proteins, which bind to the human angiotensin-converting enzyme 2 (ACE2) proteins. Particularly, the receptor binding domains (RBDs) mediate the interaction and contain several disordered regions, which help in the binding. Investigations on the influence of disordered residues/regions in stability and binding of spike protein with ACE2 help to understand the disease pathogenesis, which has not yet been studied. In this study, we have used molecular-dynamics simulations to characterize the structural changes in disordered regions of the spike protein that result from ACE2 binding. We observed that the disordered regions undergo disorder-to-order transition (DOT) upon binding with ACE2, and the DOT residues are located at functionally important regions of RBD. Although the RBD is having rigid structure, DOT residues make conformational rearrangements for the spike protein to attach with ACE2. The binding is strengthened via hydrophilic and aromatic amino acids mainly present in the DOTs. The positively correlated motions of the DOT residues with its nearby residues also explain the binding profile of RBD with ACE2, and the residues are observed to be contributing more favorable binding energies for the spike-ACE2 complex formation. This study emphasizes that intrinsically disordered residues in the RBD of spike protein may provide insights into its etiology and be useful for drug and vaccine discovery.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , COVID-19/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Pliability , Protein Binding , Static Electricity
2.
Infection ; 49(2): 199-213, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-743787

ABSTRACT

PURPOSE: The coronavirus outbreak emerged as a severe pandemic, claiming more than 0.8 million lives across the world and raised a major global health concern. We survey the history and mechanism of coronaviruses, and the structural characteristics of the spike protein and its key residues responsible for human transmissions. METHODS: We have carried out a systematic review to summarize the origin, transmission and etiology of COVID-19. The structural analysis of the spike protein and its disordered residues explains the mechanism of the viral transmission. A meta-data analysis of the therapeutic compounds targeting the SARS-CoV-2 is also included. RESULTS: Coronaviruses can cross the species barrier and infect humans with unexpected consequences for public health. The transmission rate of SARS-CoV-2 infection is higher compared to that of the closely related SARS-CoV infections. In SARS-CoV-2 infection, intrinsically disordered regions are observed at the interface of the spike protein and ACE2 receptor, providing a shape complementarity to the complex. The key residues of the spike protein have stronger binding affinity with ACE2. These can be probable reasons for the higher transmission rate of SARS-CoV-2. In addition, we have also discussed the therapeutic compounds and the vaccines to target SARS-CoV-2, which can help researchers to develop effective drugs/vaccines for COVID-19. The overall history and mechanism of entry of SARS-CoV-2 along with structural study of spike-ACE2 complex provide insights to understand disease pathogenesis and development of vaccines and drugs.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Animals , COVID-19/epidemiology , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Protein Binding , Protein Folding , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL